Publications

Found 50 results
Author Title [ Type(Asc)] Year
Filters: Author is Michael W. Mahoney  [Clear All Filters]
Conference Paper
Wang, D., Rao S., & Mahoney M. W. (2015).  Unified Acceleration Method for Packing and Covering Problems via Diameter Reduction. Proceedings of the 43rd ICALP Conference.
Martin, C.. H., & Mahoney M. W. (2019).  Traditional and Heavy-Tailed Self Regularization in Neural Network Models. Proceeding of the 36th ICML Conference. 4284-4293.
Xu, P., Yang J., Roosta-Khorasani F., Re C., & Mahoney M. W. (2016).  Sub-sampled Newton Methods with Non-uniform Sampling. Proceedings of the 2016 NIPS Conference.
Martin, C.. H., & Mahoney M. W. (2019).  Statistical Mechanics Methods for Discovering Knowledge from Modern Production Quality Neural Networks. Proceedings of the 25th Annual SIGKDD. 3239-3240.
Andersen, D. G., Du S. S., Mahoney M. W., Melgaard C., Wu K., & Gu M. (2015).  Spectral Gap Error Bounds for Improving CUR Matrix Decomposition and the Nystrom Method.
Veldt, N., Gleich D., & Mahoney M. W. (2016).  A Simple and Strongly-Local Flow-Based Method for Cut Improvement. Proceedings of the 33rd ICML Conference.
Yang, J., Sindhwani V., Fan Q., Avron H., & Mahoney M. W. (2014).  Random Laplace Feature Maps for Semigroup Kernels on Histograms.
Yang, J., Sindhwani V., Avron H., & Mahoney M. W. (2014).  Quasi-Monte Carlo Feature Maps for Shift-Invariant Kernels.
Shen, S.., Dong Z.., Ye J.., Ma L.., Yao Z.., Gholami A.., et al. (2020).  Q-BERT: Hessian Based Ultra Low Precision Quantization of BERT. Proceedings of the AAAI-20 Conference.
Shun, J., Roosta-Khorasani F., Fountoulakis K., & Mahoney M. W. (2016).  Parallel Local Graph Clustering. Proceedings of the VLDB Endowment. 9(12), 
Gittens, A., Kottalam J., Yang J., Ringenburg M. F., Chhugani J., Racah E., et al. (2016).  A multi-platform evaluation of the randomized CX low-rank matrix factorization in Spark. Proceedings of the 5th International Workshop on Parallel and Distributed Computing for Large Scale Machine Learning and Big Data Analytics.
Derezinski, M.., Clarkson K.. L., Mahoney M. W., & Warmuth M.. K. (2019).  Minimax experimental design: Bridging the gap between statistical and worst-case approaches to least squares regression. Proceedings of 2019 COLT.
Ma, L.., Montague G.., Ye J.., Yao Z.., Gholami A.., Keutzer K.., et al. (2020).  Inefficiency of K-FAC for Large Batch Size Training. Proceedings of the AAAI-20 Conference.
Martin, C.. H., & Mahoney M. W. (2020).  Heavy-Tailed Universality Predicts Trends in Test Accuracies for Very Large Pre-Trained Deep Neural Networks. Proceedings of 2020 SDM Conference.
Dong, Z.., Yao Z.., Gholami A.., Mahoney M. W., & Keutzer K.. (2019).  HAWQ: Hessian AWare Quantization of Neural Networks with Mixed-Precision. Proceedings of ICCV 2019.
Yang, J., Mahoney M. W., Saunders M. A., & Sun Y. (2016).  Feature-distributed sparse regression: a screen-and-clean approach. Proceedings of the 2016 NIPS Conference.
Derezinski, M.., & Mahoney M. W. (2019).  Distributed estimation of the inverse Hessian by determinantal averaging. Proceedings of the 2019 NeurIPS Conference.
Jing, L., Liu B., Choi J., Janin A., Bernd J., Mahoney M. W., et al. (2016).  A discriminative and compact audio representation for event detection. Proceedings of the 2016 ACM Conference on Multimedia (MM '16). 57-61.
Devarakonda, A., Fountoulakis K., Demmel J., & Mahoney M. W. (2016).  Avoiding communication in primal and dual block coordinate descent methods.
Mahoney, M. W., Rao S., Wang D., & Zhang P. (2016).  Approximating the Solution to Mixed Packing and Covering LPs in parallel time.
Gleich, D., & Mahoney M. W. (2014).  Anti-Differentiating Approximation Algorithms: A Case Study with Min-Cuts, Spectral, and Flow.
Zhang, T.., Yao Z.., Gholami A.., Keutzer K.., Gonzalez J.., Biros G.., et al. (2019).  ANODEV2: A Coupled Neural ODE Evolution Framework. Proceedings of the 2019 NeurIPS Conference.
Book Chapter
Mahoney, M. W., & Drineas P. (2016).  Structural properties underlying high-quality Randomized Numerical Linear Algebra algorithms. Handbook of Big Data. 137-154.
Gleich, D., & Mahoney M. W. (2016).  Mining Large graphs. Handbook of Big Data. 191-220.

Pages