Publications

Found 58 results
Author Title [ Type(Desc)] Year
Filters: Author is M. W. Mahoney  [Clear All Filters]
Book Chapter
Gleich, D., & Mahoney M. W. (2016).  Mining Large graphs. Handbook of Big Data. 191-220.
Mahoney, M. W., & Drineas P. (2016).  Structural properties underlying high-quality Randomized Numerical Linear Algebra algorithms. Handbook of Big Data. 137-154.
Conference Paper
Gittens, A.., Rothauge K.., Wang S.., Mahoney M.. W., Gerhardt L.., Prabhat, et al. (2018).  Accelerating Large-Scale Data Analysis by Offloading to High-Performance Computing Libraries using Alchemist. Proceedings of the 24th Annual SIGKDD. 293-301.
Zhang, T.., Yao Z.., Gholami A.., Keutzer K.., Gonzalez J.., Biros G.., et al. (2019).  ANODEV2: A Coupled Neural ODE Evolution Framework. Proceedings of the 2019 NeurIPS Conference.
Gleich, D., & Mahoney M. W. (2014).  Anti-Differentiating Approximation Algorithms: A Case Study with Min-Cuts, Spectral, and Flow.
Mahoney, M. W., Rao S., Wang D., & Zhang P. (2016).  Approximating the Solution to Mixed Packing and Covering LPs in parallel time.
Devarakonda, A., Fountoulakis K., Demmel J., & Mahoney M. W. (2016).  Avoiding communication in primal and dual block coordinate descent methods.
Jing, L., Liu B., Choi J., Janin A., Bernd J., Mahoney M. W., et al. (2016).  A discriminative and compact audio representation for event detection. Proceedings of the 2016 ACM Conference on Multimedia (MM '16). 57-61.
Derezinski, M.., & Mahoney M. W. (2019).  Distributed estimation of the inverse Hessian by determinantal averaging. Proceedings of the 2019 NeurIPS Conference.
Lopes, M.. E., Wang S.., & Mahoney M.. W. (2018).  Error Estimation for Randomized Least-Squares Algorithms via the Bootstrap. Proceedings of the 35th ICML Conference. 3223-3232.
Yang, J., Mahoney M. W., Saunders M. A., & Sun Y. (2016).  Feature-distributed sparse regression: a screen-and-clean approach. Proceedings of the 2016 NIPS Conference.
Kylasa, S.. B., Roosta-Khorasani F.., Mahoney M.. W., & Grama A.. (2019).  GPU Accelerated Sub-Sampled Newton's Method. Proceedings of the 2019 SDM Conference. 702-710.
Dong, Z.., Yao Z.., Gholami A.., Mahoney M. W., & Keutzer K.. (2019).  HAWQ: Hessian AWare Quantization of Neural Networks with Mixed-Precision. Proceedings of ICCV 2019.
Martin, C.. H., & Mahoney M. W. (2020).  Heavy-Tailed Universality Predicts Trends in Test Accuracies for Very Large Pre-Trained Deep Neural Networks. Proceedings of 2020 SDM Conference.
Yao, Z.., Gholami A.., Lei Q.., Keutzer K.., & Mahoney M.. W. (2018).  Hessian-based Analysis of Large Batch Training and Robustness to Adversaries. Proceedings of the 2018 NeurIPS Conference. 4954-4964.
Ma, L.., Montague G.., Ye J.., Yao Z.., Gholami A.., Keutzer K.., et al. (2020).  Inefficiency of K-FAC for Large Batch Size Training. Proceedings of the AAAI-20 Conference.
Derezinski, M.., Clarkson K.. L., Mahoney M. W., & Warmuth M.. K. (2019).  Minimax experimental design: Bridging the gap between statistical and worst-case approaches to least squares regression. Proceedings of 2019 COLT.
Gittens, A., Kottalam J., Yang J., Ringenburg M. F., Chhugani J., Racah E., et al. (2016).  A multi-platform evaluation of the randomized CX low-rank matrix factorization in Spark. Proceedings of the 5th International Workshop on Parallel and Distributed Computing for Large Scale Machine Learning and Big Data Analytics.
Shun, J., Roosta-Khorasani F., Fountoulakis K., & Mahoney M. W. (2016).  Parallel Local Graph Clustering. Proceedings of the VLDB Endowment. 9(12), 
Shen, S.., Dong Z.., Ye J.., Ma L.., Yao Z.., Gholami A.., et al. (2020).  Q-BERT: Hessian Based Ultra Low Precision Quantization of BERT. Proceedings of the AAAI-20 Conference.
Yang, J., Sindhwani V., Avron H., & Mahoney M. W. (2014).  Quasi-Monte Carlo Feature Maps for Shift-Invariant Kernels.
Yang, J., Sindhwani V., Fan Q., Avron H., & Mahoney M. W. (2014).  Random Laplace Feature Maps for Semigroup Kernels on Histograms.
Fountoulakis, K.., Gleich D.. F., & Mahoney M.. W. (2018).  A Short Introduction to Local Graph Clustering Methods and Software. Abstracts of the 7th International Conference on Complex Networks and Their Applications.
Veldt, N., Gleich D., & Mahoney M. W. (2016).  A Simple and Strongly-Local Flow-Based Method for Cut Improvement. Proceedings of the 33rd ICML Conference.

Pages