Publications

Found 50 results
Author Title [ Type(Desc)] Year
Filters: Author is Michael W. Mahoney  [Clear All Filters]
Book Chapter
Gleich, D., & Mahoney M. W. (2016).  Mining Large graphs. Handbook of Big Data. 191-220.
Mahoney, M. W., & Drineas P. (2016).  Structural properties underlying high-quality Randomized Numerical Linear Algebra algorithms. Handbook of Big Data. 137-154.
Conference Paper
Zhang, T.., Yao Z.., Gholami A.., Keutzer K.., Gonzalez J.., Biros G.., et al. (2019).  ANODEV2: A Coupled Neural ODE Evolution Framework. Proceedings of the 2019 NeurIPS Conference.
Gleich, D., & Mahoney M. W. (2014).  Anti-Differentiating Approximation Algorithms: A Case Study with Min-Cuts, Spectral, and Flow.
Mahoney, M. W., Rao S., Wang D., & Zhang P. (2016).  Approximating the Solution to Mixed Packing and Covering LPs in parallel time.
Devarakonda, A., Fountoulakis K., Demmel J., & Mahoney M. W. (2016).  Avoiding communication in primal and dual block coordinate descent methods.
Jing, L., Liu B., Choi J., Janin A., Bernd J., Mahoney M. W., et al. (2016).  A discriminative and compact audio representation for event detection. Proceedings of the 2016 ACM Conference on Multimedia (MM '16). 57-61.
Derezinski, M.., & Mahoney M. W. (2019).  Distributed estimation of the inverse Hessian by determinantal averaging. Proceedings of the 2019 NeurIPS Conference.
Yang, J., Mahoney M. W., Saunders M. A., & Sun Y. (2016).  Feature-distributed sparse regression: a screen-and-clean approach. Proceedings of the 2016 NIPS Conference.
Dong, Z.., Yao Z.., Gholami A.., Mahoney M. W., & Keutzer K.. (2019).  HAWQ: Hessian AWare Quantization of Neural Networks with Mixed-Precision. Proceedings of ICCV 2019.
Martin, C.. H., & Mahoney M. W. (2020).  Heavy-Tailed Universality Predicts Trends in Test Accuracies for Very Large Pre-Trained Deep Neural Networks. Proceedings of 2020 SDM Conference.
Ma, L.., Montague G.., Ye J.., Yao Z.., Gholami A.., Keutzer K.., et al. (2020).  Inefficiency of K-FAC for Large Batch Size Training. Proceedings of the AAAI-20 Conference.
Derezinski, M.., Clarkson K.. L., Mahoney M. W., & Warmuth M.. K. (2019).  Minimax experimental design: Bridging the gap between statistical and worst-case approaches to least squares regression. Proceedings of 2019 COLT.
Gittens, A., Kottalam J., Yang J., Ringenburg M. F., Chhugani J., Racah E., et al. (2016).  A multi-platform evaluation of the randomized CX low-rank matrix factorization in Spark. Proceedings of the 5th International Workshop on Parallel and Distributed Computing for Large Scale Machine Learning and Big Data Analytics.
Shun, J., Roosta-Khorasani F., Fountoulakis K., & Mahoney M. W. (2016).  Parallel Local Graph Clustering. Proceedings of the VLDB Endowment. 9(12), 
Shen, S.., Dong Z.., Ye J.., Ma L.., Yao Z.., Gholami A.., et al. (2020).  Q-BERT: Hessian Based Ultra Low Precision Quantization of BERT. Proceedings of the AAAI-20 Conference.
Yang, J., Sindhwani V., Avron H., & Mahoney M. W. (2014).  Quasi-Monte Carlo Feature Maps for Shift-Invariant Kernels.
Yang, J., Sindhwani V., Fan Q., Avron H., & Mahoney M. W. (2014).  Random Laplace Feature Maps for Semigroup Kernels on Histograms.
Veldt, N., Gleich D., & Mahoney M. W. (2016).  A Simple and Strongly-Local Flow-Based Method for Cut Improvement. Proceedings of the 33rd ICML Conference.
Andersen, D. G., Du S. S., Mahoney M. W., Melgaard C., Wu K., & Gu M. (2015).  Spectral Gap Error Bounds for Improving CUR Matrix Decomposition and the Nystrom Method.
Martin, C.. H., & Mahoney M. W. (2019).  Statistical Mechanics Methods for Discovering Knowledge from Modern Production Quality Neural Networks. Proceedings of the 25th Annual SIGKDD. 3239-3240.
Xu, P., Yang J., Roosta-Khorasani F., Re C., & Mahoney M. W. (2016).  Sub-sampled Newton Methods with Non-uniform Sampling. Proceedings of the 2016 NIPS Conference.
Martin, C.. H., & Mahoney M. W. (2019).  Traditional and Heavy-Tailed Self Regularization in Neural Network Models. Proceeding of the 36th ICML Conference. 4284-4293.
Wang, D., Rao S., & Mahoney M. W. (2015).  Unified Acceleration Method for Packing and Covering Problems via Diameter Reduction. Proceedings of the 43rd ICALP Conference.

Pages